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1. Introduction 
Formal requirement specifications are mathematically rigorous specifications that are 

readable and executable by a computer based verification system. Many formal 
specification languages have been described over the past two decades, including linear-
time temporal logic (LTL) [LTL], branching-time temporal logics [CTL], and more 
recently, statechart assertions [Dr1]. For most NASA applications, the ultimate purpose 
of formal specifications is to be applied towards subsequent computer-aided verification, 
using techniques such a model-checking, theorem proving, and run-time verification; 
[DMS] provides a three dimensional comparison of these three primary verification 
techniques. 

Harel statecharts [Ha], currently part of the UML standard, are typically used for 
design analysis and implementation. In his 2006 book [Dr1], the author describes the 
application of deterministic and non-deterministic statecharts-assertions to formal 
requirement specification and run-time verification. This approach is currently in active 
use by the NASA IV&V facility. 

Runtime Verification (RV) is a class of methods for tracking the temporal behavior of 
an underlying application and comparing it against its formal specification. RV methods 
range from off-line logging methods to on-line  tracking of complete formal 
requirements. NASA is currently using an log file based monitoring approach to verify 
statechart assertion specifications for GPM and the Crew Vehicle component of the Orion 
mission. 

Effective use of RV-based verification depends on the construction of sound and 
complete correctness property assertions. Validation is the process of assuring the 
correctness of formal specification assertions with respect to their informal intent as 
manifested by natural language specifications.  In [DKS], Drusinsky, Kadir, and Shing 
describe the validation process used to create sound LTL/MTL correctness properties. In 
[DOS] Drusinsky, Otani, and Shing describe a set of validation scenario templates, or 
patterns, that are common to most statechart assertion validation test suites. 

This paper describes a process for extracting natural language specifications from 
informal UML diagrams [UML]. Hence, it addresses one of the most difficult concerns 
for many formal specification and verification techniques that depend on the existence of 
good natural language specifications.  In fact, this also addresses a concern of old 
fashioned human based testers as well; after-all, human testers need meaningful, accurate, 
and detailed natural specifications in order to write good tests.  

To this end, this paper describes a systematic process for obtaining NL requirements from 
a UML based System Reference Model (SRM).  The paper describes a case study 
conducted at the NASA IV&V facility in which we created: (i) created SRM’s for the 
Gravity Recovery and Interior Laboratory (GRAIL) mission and the Global Precipitation 
Measurement (GPM) mission, (ii) extracted natural language requirements from each 
SRM, (iii) created statechart assertion formal specifications for those requirements, and 
(iv) performed validation to assure that our formal specifications correctly represent the 
spirit behind the natural language specifications. 
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This paper is organized as follows. Section 2 describes the GRAIL and GPM missions 
while sections 3 through 5 describe our results using GRAIL as an example:  section 3 
describes the SRM creation process, section 4 describes the process of extracting NL 
requirements from the SRM, and section 5 describes four categories of requirements that 
can often be extracted from an SRM.  

We used the StateRover Eclipse plug-in to create statechart assertions [Ec, Sr] and JUnit 
[Ju] (the de-facto standard framework for Java testing) as a framework for validation.  

2. GRAIL and GPM Missions 
GRAIL’s mission is to reveal the moon’s internal structure and evolution by flying twin 
spacecraft orbiters in tandem orbits around the moon for several months to measure its 
gravity field in unprecedented detail [GRAIL]. The orbiters will constantly adjust attitude 
to face each other, while the distance between the orbiters is expected to fluctuate in 
response to changes in lunar gravitation field.  

The GPM mission will study global precipitation (rain, snow, and ice) from low earth 
orbit [GPM]. Carrying a dual frequency radar instrument and a passive microwave 
radiometer, the GPM spacecraft will serve as a calibration standard, and each instrument 
requires precise pointing for target location determination. 

GRAIL and GPM, as well as many other scientific missions can be thought of as two 
separate missions: the flight mission and the scientific mission. The flight-mission is the 
mission we use in this paper. GRAIL’s main high-level use-case scenario is to send the 
pair of orbiters into pre-prescribed lunar orbits; the orbiters will constantly adjust attitude 
so to face each other, while the distance between the orbiters is expected to fluctuate in 
response to changes in lunar gravitation field. The orbiters will measure the fluctuating 
distance as part of the scientific mission 

3. GRAIL SRM: The Process 
As stated above, the SRM is a way of capturing the system functional architecture 
required to achieve the mission goals. At the highest level of abstraction, a use case 
diagram is used to show all the goals and the functions necessary to achieve the goals. 
Fig. 1a is part of a top-level use case diagram representing functional goals for the 
GRAIL mission. As is common with use case driven modeling, Fig. 1a does not reflect 
the only effective way to parse the system goals and functionality. Rather, the figure is 
intended to give a sense of the overall approach. 

From this level, the SRM is elaborated with textual use cases that include preconditions, 
postconditions, a trigger, a main success scenario, and extension scenarios. Each of these 
use cases are represented as AD’s (as depicted in Fig. 1b), and critical actions (use case 
steps) are further elaborated with more AD’s and SD’s. In this approach, the UML 
diagrams take the place of the Functional Flow Block Diagrams (FFBDs). One key 
advantage over FFBDs is that UML (and alternatively SysML) provide more diverse 
constructs that can represent diverse perspectives on required system behavior and 
functionality. Because of their similarity to flowcharts, it has been found that AD’s are a 
broadly understandable way of capturing mission scenarios.  
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Insert Orbiter into Lunar Orbit

«Common»
Change Velocity Using Main Engine

Perform Lunar Orbit Insertion Burn

Achieve Lunar Orbit

Adjust Trajectory

Establish Science Formation

Reduce Orbital Period

«include»«include»

«include»«include»

«include»«include»

«include»«include»

«include»«include»

«include»«include»

a. Top level use case diagram depicting two of eight high-level goals/functions for the 
GRAIL mission. 
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«Main Success Scenario»
AchieveLunarOrbit

Mission System

Verify FS is on intended initial trajectory

Adjust Trajectory of GRAIL A and
GRAIL B to separate Lunar arrival

by one day (TCM-A2, TCM-B2)

Adjust Trajectory of GRAIL A and
GRAIL B to enter invariant manifold

(TCM-A3, TCM-B3)

Verify FS on target for polar lunar orbit insertion 

Insert GRAIL A into Lunar Orbit

Insert GRAIL B into Lunar Orbit

«Extension Scenarios»
AchieveLunarOrbitExtensions

Mission System

Adjust Trajectory of GRAIL A
and/or GRAIL B to correct
injection errors (TCM-A1,

TCM-B1)

Recalibrate main engine and/or IMU

Adjust Trajectory of GRAIL A
and/or GRAIL B to separate Lunar

arrival by one day

Recalibrate main engine and/or IMU

Adjust Trajectory of GRAIL A and/or
GRAIL B to achieve low energy
trajectory (TCM-A4, TCM-B4)

Adjust Trajectory of GRAIL A and/or
GRAIL B to target polar orbit insertion

point (TCM-A5, TCM-B5)

Begin planning of orbit
corrective maneuver(s)

Begin planning of orbit
corrective maneuver(s)

[Not on intended trajectory][Not on intended trajectory]

[On intended trajectory][On intended trajectory]

[Not separated by one day][Not separated by one day]

[Separated by one day][Separated by one day]

[Not on low energy trajectory][Not on low energy trajectory]

[On low energy trjectory][On low energy trjectory]

[Not on target][Not on target]

[On target][On target]

[Recoverable Lunar orbit][Recoverable Lunar orbit]

[Not in Lunar orbit or recoverable orbit][Not in Lunar orbit or recoverable orbit]

[Correct Lunar orbit][Correct Lunar orbit]

[Not in Lunar orbit or recoverable orbit][Not in Lunar orbit or recoverable orbit]

[Correct Lunar orbit][Correct Lunar orbit]

 
b. AchieveLunarOrbit activity diagram representing the mission scenario that starts with 
both orbiters being separated from the launch vehicle and being on an initial trajectory 

departing earth orbit, and concluding with both orbiters in lunar orbit. 

 

Figure 1. High level SRM view of the GRAIL flight mission 
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4. GRAIL: From SRM to NL Requirements 
The GRAIL SRM consists of use-case diagrams, use-cases, activity diagrams (AD’s), 
sequence diagrams (SD’s), and finite state machines (FSM). These artifacts are informal 
and as discussed below are not usable out of the box for subsequent verification. Stated 
differently, the SRM artifacts are almost recommendations, and are therefore not 
definitive “shall or “shall not” requirements; this point will be demonstrated using some 
of the examples the follow. Hence enters the next important step in our process namely, 
formal specification requirement and assertion extraction. Our strategy is to first identify 
items of concern, or concerns for short, by observing the GRAIL SRM diagrams in a 
certain critical manner. It is important to note here that a concern is not about the quality 
of a GRAIL AD, SD, or FSM as such; rather, it is a concern or constraint about the 
GRAIL flight code behavior as prescribed by the AD, SD, or FSM  that a reasonable 
tester should address in his/her test harness. Stated differently, it is because we have well 
written and informative, albeit informal,  SRM diagrams that it is possible to identify test 
related concerns from them. In a later step, we will create computer-based assertions, 
they too being testers of sorts, to address those concerns during verification. 

4.1 The Assertion Development Process 
We will create concern related assertion in a two step process. The first step is to identify 
a concern in an AD, SD, or FSM and capture it as a NL requirement. The second step is 
to formalize a corresponding statechart-assertion (for a reactive requirement) or 
propositional-assertion (for a transformational requirement) and to validate it using the 
process described earlier. 

To simplify the first step, we have identified four categories of concerns, numbered C1 
through C4 For each category we will present one or more examples that consist of the 
UML diagram, a narrative description of concerns, the resulting NL requirements, and 
their corresponding assertions and validation tests.  

5. Categories of Concerns  

5.1. C1: Bounded Eventualities 
The AD of  Fig. 2a captures GRAILs flight behavior as of the separation of the two 
orbiters from the primary launch vehicle, and until they are inserted into their respective 
lunar orbits. The AD of Fig. 2b details the Perform Lunar Orbit Insertion Burn 
(PerformLOIBurn) activity of Fig. 2a, an activity performed by each orbiter, intended to 
insert the orbiter in a lunar orbit prescribed by MS. The SD of Fig. 2c depicts the same 
scenario1.  

The insertion of an orbiter into the correct lunar orbit is performed by turning on the 
Propulsion Fuel Valve at the right time for a specified duration in a reverse boost mode, 
i.e., in a direction opposite to the acceleration vector. Mission Systems (MS) control 
determines and uploads those parameters in a command sequence. The orbiter is meant to 

                                                 
1 One could argue that the SD view is preferable for our purpose because SD messages are easier to affiliate 
with method names used in assertions and in the executable-SRM section below. 
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be autonomous during this boost phase; this is because the boost operation is time 
sensitive, i.e., no external entity should be allowed to interfere in the operation, not even 
MS or fault protection.  This is indicated by the AD of Fig. 2a, where fault protection is 
turned off before the slew and burn activities and turned back on afterwards. A concern 
here is therefore that the orbiter performs boost according to parameters prescribed by 
MS the command sequence, up to some level of acceptable tolerance. Hence, the NL-
requirement is R1: once LOI burn sequence is uploaded, the orbiter will, within the time 
prescribed in the command sequence parameters (plus/minus Δt1), perform a burn for the 
duration prescribed in the command sequence parameters (plus/minus Δt2). 

Clearly, the key concern of R1 is with tasks performed within a prescribed time, i.e., with 
bounded eventualities. 

Fig. 3 depicts the statechart-assertion for requirement R1. 
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«Main Success Scenario»
InsertOrbiterIntoLunarOrbit

«precondition» 1. Orbiter is on the correct low-energy trajectory to the polar lunar orbit in...

Orbiter

Slew to Burn Attitude

Disable Autonomous Fault
Protection Responses

Enable Fault Protection
Settings

Slew to Sun Biased
Attitude

Perform Lunar orbit
insertion burn

Mission System

Command LOI
Sequence to begin

Verify Orbiter in
correct orbit

«Extension Scenarios»
Insert Spacecraft Into Lunar Orbit Extensions

Orbiter

Execute corrective maneuvers

Mission System

Command LOI sequence
to begin

Determine necessary
corrective maneuvers

Uplink sequence(s) for
corrective maneuvers

Command re-enabling fault
protection

[LOI sequance starts][LOI sequance starts] [LOI sequence does NOT start][LOI sequence does NOT start]

[Fault Protection disabled
OR enabled]
[Fault Protection disabled
OR enabled]

[Required attitude achieved
OR not achieved]
[Required attitude achieved
OR not achieved]

[Fault protection disabled][Fault protection disabled]

[Fault protection enabled][Fault protection enabled]

[Incorrect but recoverable orbit][Incorrect but recoverable orbit]

[Correct Orbit][Correct Orbit]

[NOT in Lunar orbit OR NOT in recoverable orbit][NOT in Lunar orbit OR NOT in recoverable orbit]

a. InsertOrbiterIntoLunarOrbit activity diagram  
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Perform Lunar Orbit Insertion Burn

C&DH

LOI burn start time

LOI burn max time

endOfLOIBurn

GuidanceNavigationAndControl

Perform constant-rate +Z
pitch maneuver

Measure and
compare target and

actual Delta V

endOfLOIBurn

enterInertialHoldMode

Propulsion

Turn on Catalyst-bed heaters

Open fuel valve

Close fuel valve

Turn off Catalyst-bed heaters

«Assertion»
Once LOI sequence begins
execution, the orbiter will open
the fuel valve, begin the
constant-rate +Z pitch
maneuver, and begin measuring
actual delta V within +- TBD
milliseconds of the prescribed
time.

«Assertion»
Once fuel valve is opened, the
orbiter will close the fuel valve
and stop the constant-rate +Z
pitch maneuver within TBD
milliseconds of the Target Delta
V equalling or exceeding the
actual Delta V.

[Actual Delta V >= Target Delta V][Actual Delta V >= Target Delta V]

[Actual Delta V< Target Delta V][Actual Delta V< Target Delta V]

b. PerformLOIBurn activity diagram. 
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c. PerformLOIBurn sequence diagram. 

sd PerformLOIBurn

GuidanceNavigationAndControlPropulsionC&DH

Wait for LOI start time

Wait for LOI burn maximum time

par

par

1.1: startCatalystBedHeaters1.1: startCatalystBedHeaters

1.7: stopCatalystBedHeaters1.7: stopCatalystBedHeaters

1.6.1: enterInertialHoldMode1.6.1: enterInertialHoldMode

1.6: endLOIBurn1.6: endLOIBurn

1.3: collectPropulsionEventData1.3: collectPropulsionEventData

1.2: openFuelValve1.2: openFuelValve

1.5: closeFuelValve1.5: closeFuelValve

1.4: enterLOIDeltaVMode1.4: enterLOIDeltaVMode

1.4.3: closeFuelValve1.4.3: closeFuelValve

1.4.1: constant+ZPitchRate1.4.1: constant+ZPitchRate

1.4.2: measureAndCompareDeltaV1.4.2: measureAndCompareDeltaV

1.4.5: endLOIBurn1.4.5: endLOIBurn

1.4.4: endLOIBurn1.4.4: endLOIBurn

1.4.4.1: enterInertialHoldMode1.4.4.1: enterInertialHoldMode

1: continueLOISequence1: continueLOISequence

Figure 2. 
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Listing 1 includes two validation tests for this assertion. Note that the tests create their 
own mockup accessory BurnSequence data objects.   

 

Figure 3. statechart-assertion for NL requirement R1. 

 public void testMe() {  
  int nTime= 0; 
  BurnSequence seq = new BurnSequence(1000, 100); 
  assertion.burnSequenceUploaded(seq); 
  nTime = 1009; 
  CDH.setTime(nTime); 
  assertion.openedFuelValve(); 
  nTime += 96; 
  CDH.setTime(nTime); 
  assertion.closeFuelValve(); 
  nTime += 100; 
  CDH.setTime(nTime); 
  assertTrue(assertion.isSuccess()); 
 } 

a. A success validation test scenario. 
 public void testMe() { 
  int nTime = 0; 
  BurnSequence seq = new BurnSequence(1000, 100); 
  assertion.burnSequenceUploaded(seq); 
  nTime += 1008; 
  CDH.setTime(nTime); 
  assertion.openedFuelValve(); 
  nTime += 94; 
  CDH.setTime(nTime); // too early 
  assertion.closeFuelValve(); 
  nTime += 100; 
  CDH.setTime(nTime); 
  assertFalse(assertion.isSuccess()); 
 } 
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b. A failure validation test scenario. 

Listing 1. Validation tests for the statechart-assertion of Fig.  3. 

Note that the Bounded Eventualities category is actually a subset of the Order and 
Precedence category; hence, Fig. 2a and Fig. 2b will be analyzed again in that section.  

5.2. C2: Loops 
This category analyzes possible system behavior issues related to loops found in AD’s, 
SD’s, or FSM’s. 

The AttitudeControl FSM of Fig. 4 depicts the three primary modes of attitude control:  

1. Slew, where reaction wheels are used to adjust attitude, if associated forces are 
sufficiently small.  

2. LOIDeltaV - Lunar Orbit Insertion Delta-V, where . 

3. InertialHold, The no-operation or idle mode.  

GuidanceNavigationAndControl

LOIDeltaV

PitchOrbiter
do/ConstantRate+ZPitch

DeltaVTrigger
do/MeasureAndCompareDeltaV

InertialHold
do/HoldInertialAttitude

SlewAbsolute
do/SlewOrbiterAbsolute

endLOIBurnendLOIBurn

enterLOIDeltaVModeenterLOIDeltaVMode

enterSlewModeenterSlewMode
enterInertialHoldModeenterInertialHoldMode

 

Figure 4. FSM for Attitude Control modes. 

 
Clearly, this FSM implies the following requirement; R2: The system cannot change 
modes from Slew to LOIDeltaV or visa-versa without being in the InertialHold mode for 
at least T seconds. A statechart assertion for this requirement is depicted in Fig. 5. Listing 
2 contains a validation test for this assertion. 
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Figure  5. Statechart-assertion for requirement R2. 

 
 public void testMe() { 
  assertion.enterLOIDeltaVMode(); 
  assertion.incrTime(20); 
  assertion.enterInertialHoldMode(); 
  assertTrue(assertion.isSuccess()); 
  assertion.incrTime(35); 
  assertion.enterSlewMode(); 
  assertion.incrTime(10); 
  assertTrue(assertion.isSuccess()); 
  assertion.enterInertialHoldMode(); 
  assertion.incrTime(10); 
  assertion.enterSlewMode(); 
  assertFalse(assertion.isSuccess()); 
 } 

Listing 2. A validation test for the statechart-assertion of Fig. 5 . 

Note that although R2  is not a looping requirement per-se, it helped uncover the 
following looping concern: should  there be a limit on the number of times or the 
frequency in which mode can change between Slew and LOIDeltaV, or visa-versa? The 
authors sulution yielded the following requirement. R3 : The system can toggle between 
Slew and LOIDeltaV modes at most twice per minute.   A (non-deterministic) statechart 
assertion for this requirement is depicted in Fig.6. Listing 3 contains a validation test for 
this assertion. 
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Figure 6.  A (non-deterministic) statechart-assertion for requirement R3 . 

 public void testMe() { 
  assertion.enterSlewMode(); 
  assertion.incrTime(20); 
  assertion.enterLOIDeltaVMode(); 
  assertion.incrTime(50); 
  assertion.enterSlewMode(); 
  assertTrue(assertion.isSuccess()); 
  assertion.incrTime(4); 
  assertion.enterLOIDeltaVMode(); 
  assertFalse(assertion.isSuccess()); 
 } 

Listing 3. A validation test for the statechart-assertion of Fig. 6 . 

 

Consider the Slew Orbiter Absolute AD of Fig. 8, a refinement of the  Slew to Burn 
activity within the Adjust Trajectory AD of Fig. 7. The Slew Orbiter Absolute activity 
performs a slew to an absolute attitude. After selecting reaction wheels as the actuator 
that physically induces the slew, it simultaneously predicts and determines attitude. If 
either of those activities has an error then the extension side of the AD shows that the 
Kalman filter2 is reset and the loop is then closed with the two activities being executed 
again. A looping concern here is: how many times and how often this loop can be 

                                                 
2 The Kalman filter is an efficient recursive filter that estimates the state of a linear dynamic system from a 
series of noisy measurements. See http://en.wikipedia.org/wiki/Kalman_filter 
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traversed? With the SME’s feedback we forged the following requirement R4: whenever 
the Kalman Filter is reset more than N times in a 5  minute interval  then Safe mode 
should be entered within 30 seconds afterwards . 

 

Figure 7. The AdjustTrajectory activity diagram 
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Figure 8. Slew Orbiter Absolute activity diagram, a refinement of the Slew to Burn 

activity of Fig. 4.7. 
 

A (non-deterministic) statechart-assertion for this requirement is depicted in Fig. 9. 
Listing 4 is a corresponding validation test. 

Another looping concern associated with the AD of Fig. 8 is related to entering and 
ending Safe Mode, as follows. It is fault protection that forces the orbiter into safe mode, 
and it is a human in the loop in MS that has the authority and ability to bring the orbiter 
out of that mode. The concern is therefore whether there should be a limit on the number 
and frequency of such switches in and out of safe mode. Indeed, a similar a problem had 
occurred in the past. Since requirement R3 (and its associated statechart-assertion of Fig. 
6) is similar in nature to this requirement we will not discuss it further. 
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Figure 9. A (non-deterministic) statechart-assertion for requirement R4. 

 
 public void testMe() { 
  // Adapting the validation test of Listing 3.7: 

// T/30 is the ratio between the time constraint in  
// Listing 3.7 and here 

  int nFACTOR = 10*60/30;   
     
       assertion.kalmanFilterReset();  
       assertion.incrTime(6*nFACTOR); 
       assertion.kalmanFilterReset(); 
       assertion.incrTime(5*nFACTOR); 
       assertion.kalmanFilterReset();  // <=- start of violating  

  // sequence 
       assertion.incrTime(20*nFACTOR); 
       assertion.kalmanFilterReset(); // 4'th as of time 0 happens 

 // at time 31*nFACTOR --> ok 
       assertion.incrTime(6*nFACTOR); 
       assertion.kalmanFilterReset(); // 4'th as of time 6 after  
       //addition 31*nFACTOR --> ok 
       assertTrue(assertion.isSuccess()); 
       assertion.incrTime(1*nFACTOR); 
       assertion.kalmanFilterReset(); // 4’th E as of time  
         //11*nFACTOR happens after  
            // additional 27 time units  
       assertion.incrTime(31); 
       assertion.enterSafeMode(); // too late 
       assertFalse(assertion.isSuccess()); 
 } 
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Listing  4. A validation test for the statechart-assertion of Fig. 9.  

5.3. C3: Reentrance 
This category encapsulates  various concerns about the system performing a scenario that 
effectively reenters an activity as specified by some UML AD, SD, or FSM diagram, 
before it has completed its current invocation.  

When the authors first analyzed reentrance issues for the PerformLOIBurn activity of 
Fig. 2b, we immediately realized that re-entrance was prohibited. In fact, although a 
orbiter might have a plurality of command sequences active at the same time, at most one 
of those can be a Propulsion Burn sequence. Hence enters requirement R5 : at most one 
propulsion burn sequence (per orbiter) can be active at any given time. The statechart-
assertion for this requirement is depicted in Fig. 10 . 

 

Figure 10. A statechart-assertion for requirement R5. 

 
Consider the ConstrantRate+ZPitch AD of Fig. 8 again. As discussed in section C2, the 
Determine Attitude and Determine Attitude rates activities are performed concurrently; in 
the extension scenario either activity can perform a Reset Kalman Filter activity and then 
re-enter the main swim lane and start new Determine Attitude and Determine Attitude 
rates activities.  This is a case of re-entrance. Several issues are unclear as presented in 
this AD: 

1. Is the Kalman filter shared between the Determine Attitude and Determine 
Attitude Rates activities or does each activity have its own copy.  

2. Is it possible for Determine Attitude to have an error but not Determine Attitude 
Rates, or visa-versa? If so, suppose for Determine Attitude has an error but not 
Determine Attitude Rates. In the extension scenario a Reset Kalman Filter activity 
is performed and then both Determine Attitude and Determine Attitude Rates are 
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initiated. Does this mean there are two copies of Determine Attitude Rates 
executing? That is probably not the case, so should the currently executing 
Determine Attitude Rates activity be restarted? What if that activity has already 
finished its task? Alternatively, what if this activity is left untouched but the 
Kalman filter is reset while its mid-way in its operation?  After-all, it might have 
used old (possibly stale) Kalman filter states in part of its calculation and zero 
states elsewhere.      

5.4. C4: Order and Precedence  
This category is about making commitments to the order of activities prescribed in AD’s, 
SD’s, and FSM’s. Consider the Insert Orbiter into Lunar Orbit AD of Fig. 2a. Note the 
sequence of three activities: Disable Autonomous Fault Protection, Slew to Burn Attitude, 
and Perform Lunar Orbit Insertion Burn, denoted as DAFP, SBA, and PLOIB, 
respectively. A concern here is whether this order is required, suggested, or just merely 
allowed; for example, is SBA allowed to happen without a following PLOIB? An 
additional concern is whether any such rule applies to the entire system or only to this 
part of the mission, in light of the fact that SBA and PLOIB appear in other AD’s, such as 
in Adjust Trajectory AD of Fig. 7. A reasonable question is therefore, do DAFP, SBA, 
and PLOIB always have to always appear in that order (as prescribed in Fig. 2a)? If not, 
how about a subsequence, such as SBA followed by PLOIB? The answer to those 
questions, as provided by Subject Matter Experts (SME’s), is the following. 

1. PLOIB is a special kind of a burn activity, one performed specially for the 
purpose of inserting the orbiter into lunar orbit. With this and any other burn 
activity, engines perform a burn to achieve a certain kinetic or attitude maneuver ; 
a slew (SBA) - an adjustment of attitude, is planned to precede a burn of any kind. 
However, it is possible in most cases, that fault protection preempt the burn 
activity. In fact, such a possibility of preemption is indicated in the Adjust 
Trajectory AD of Fig. 7, where Loss of Attitude Knowledge or Loss of Attitude 
Control trigger an extension fault-protection scenario whereby the orbiter enters 
Safe Mode. Hence follows requirement R6: during the execution of an “Insert 
Orbiter into Lunar Orbit command”, fault protection must be off during the slew 
and burn operations. 

Fig. 11 depicts a statechart-assertion for the composite of requirements R6 and 
R7. 
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Another example from this category is a concern about the PerformLOIBurn AD of Fig. 
2b. Here, not only that the order listed in the AD is a must, but there are additional 
constraints as listed in the following NL requirement. 

Figure 11. A statechart-assertion the composite of requirements R6 and R7. 

R8: Once C&DH decides to perform Lunar Orbit Insertion Burn (PerformLOIBurn)  the 
propulsion system must execute the sequence of four activities listed in Fig. 2b precisely 
in that order, with the following constraints: 

a. There must be at least T_PUMP_OPEN_LB seconds warm-up delay between 
“Turn on Catalyst-bed heaters” and “Open fuel valve”. 

b. There is an upper bound of T_PUMP_CLOSE seconds between “Close fuel 
valve” and “Turn off Catalyst-bed heaters”. 

c. “Perform constant rate pitch maneuver” must be active while the fuel valve is 
open (with 500 millisecond accuracy tolerance).  

Fig. 12 depicts a statechart assertion for items a and b of requirement R8; it also includes 
additional common sense bounds, such as an upper bound on amount of time the pump 
can be open.  Note the event labeled eventTRdefault; as discussed in my previous book it 
is a built-in event whose behavior resembles that of “else”, i.e., it fires if none of the 
other transitions that induce a state change fire. This helps us specify formally that the 
only acceptable sequence in the AD of Fig. 2b is precisely the one specified in the 
diagram (the scenario captured by the JUnit test of Listing 5.a), and no other variant be it 
a sub-sequence or super-sequence, is allowed; hence for example, the assertion prohibits 
the super-sequence of Listing 5b, in which an openFuelValve event happens twice, once 
before turnOnCatalystBedHeaters and once afterwards.  
 public void testMe1() { 

LOIBurnSequence seq = new LOIBurnSequence(1000, 100); 
  assertion.startExecutingCommand(seq); 
  assertion.incrTime(1); 

assertion.turnOnCatalystBedHeaters(); 
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  assertion.incrTime(35); // sufficient warm-up time 
 

    assertion.openFuelValve();  
    assertion.incrTime(20*60); // burn for 20 min 
  assertion.closeFuelValve(); 
    assertion.incrTime(1); // sufficiently soon therafter 

assertion.turnOffCatalystBedHeaters(); 
assertTrue(assertion.isSuccess());        

 } 

a. The precise sequence described in the AD of Fig. 2b (with additional timing delays) 
public void testMe2() { 

LOIBurnSequence seq = new LOIBurnSequence(1000, 100); 
  assertion.startExecutingCommand(seq); 
  assertion.incrTime(1); 
    assertion.openFuelValve(); // a “redundant” event not  

   // formally prohibited by  
   // the AD of Fig. 2b.  

assertion.incrTime(1); 
assertion.turnOnCatalystBedHeaters(); 

  assertion.incrTime(35); // sufficient warm-up time 
 

    assertion.openFuelValve();  
    assertion.incrTime(20*60); // burn for 20 min 
  assertion.closeFuelValve(); 
    assertion.incrTime(1); // sufficiently soon therafter 

assertion.turnOffCatalystBedHeaters(); 
assertFalse(assertion.isSuccess());        

 } 

b. A variant sequence not specifically forbidden by in the AD of Fig. 2b (with additional 
timing delays) 

Listing 5. Validation sequences for the requirement R8. 

Fig. 13 depicts a nested statechart assertion for item c of requirement R8, using the sub-
statechart notation described in [Dr1]. The top-level statechart assertion (Fig. 13a) 
references the same checkConcurrentTiming sub-statechart of Fig. 13b twice.  
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Fig. 12. A statechart assertion for items a and b of  requirement R8. 
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Fig. 13. A statechart assertion for item c of requirement R8. 

Event mapping: 
• Event openFuelValve is mapped to sub-statchart event p 
• Event startConstantPitchManeuver is mapped to sub-statchart event  q 

Event mapping: 
• Event closeFuelValve is mapped to sub-statchart event p 
• Event stopConstantPitchManeuver is mapped to sub-statchart event q 

a. Top level statechart assertion. The sub-statecharts represent a nested assertion of 
Fig 12.b. 

 
b. The sub-statchart for Fig. 13a. 
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